

Figure 1. Calculated barriers of planar nitrogen inversion in $H_2C=NX$ vs. Allred electronegativity of the atom in group X bonded to the imino nitrogen: solid line and solid circles, values from CNDO/2 scheme (present work); dashed line and open circles, values from EHMO calculations, 16

germyl imine should have a barrier to inversion of ca. 12 kcal/mol, based on an electronegativity of 2.01 for germanium,¹⁵ in reasonable agreement with the barrier observed for 1.

Previously reported¹⁶ EHMO calculations on H₂C=NX have indicated a similar trend of planar nitrogen inversion barriers vs. electronegativity of first-row elements (dashed line, Figure 1). However, barriers obtained by this method appear to be considerably lower than expected for comparable imine systems.^{3a,13}

(16) F. Kerek, G. Ostrogovich, and Z. Simon, J. Chem. Soc. B, 541 (1971).

Richard J. Cook, Kurt Mislow*

Department of Chemistry, Princeton University Princeton, New Jersey 08540 Received August 14, 1971

Boron-Carbon Coupling Constants. I. 1-Methylpentaborane(9)

Sir:

Since the first direct determination of a ${}^{11}B-{}^{11}B$ coupling constant from our laboratories, 1 we have been interested in obtaining qualitative and semiquantitative information concerning the factors which influence boron-boron coupling constants. In connection with this study, it became of interest to examine the ¹³C chemical shifts and possible carbon coupling constants to boron in some of the organoboron compounds used in this research. We wish to report here some preliminary data on the ¹³C spectrum of 1-methylpentaborane(9). A more detailed presentation of ${}^{11}B-{}^{11}B$ and ${}^{11}B-{}^{13}C$ coupling constants will be the subject of future publications.²

The ¹³C spectra were obtained on a Varian XL-100-15 nmr spectrometer operating in the Fourier transform mode at 25.2 MHz. The ¹³C spectrum is shown in Figure 1. The chemical shift of the methyl carbon is

Figure 1. ¹³C nmr spectrum (25.2 MHz) of neat 1-CH₃B₅H₈ after 12,000 pulses, with an acquisition time of 4 sec per pulse, showing a J_{BC} of 72.6 Hz. The methyl carbon is shielded with respect to CS_2 by 205.0 ppm. A capillary of C_6F_6 furnished the ¹⁹F lock signal.

205 ppm more shielded than that of CS_2 . The value of the boron-carbon coupling constant is 72.6 ± 0.5 Hz. Experimental work is currently in progress to determine the sign of $J_{\rm BC}$.

Since this is the first reported ¹¹B-¹³C coupling constant for a boron nucleus in a nonsymmetrical environment,³ it is of interest to examine this coupling constant in terms of the nature of the carbon-boron bonding in this molecule. It can easily be shown from approximate molecular orbital and valence-bond theories of spin-coupling constants⁴⁻⁶ that if the coupling constant is dominated by the Fermi contact mechanism, the coupling constant, J_{AB} , can be "related" to the fractional "s character" in the bond between atoms A and B; hence the hybridization of the atoms. Thus, if the Fermi contact mechanism dominates J_{BC} we can deduce a crude value for the hybridization of the apex boron in 1-CH₃B₅H₈.

To accomplish this, one can compare boron-carbon couplings to carbon-carbon coupling constants by multiplying the value of $J_{\rm BC}$ by the ratio of the magnetogyric ratios, γ_C/γ_B . The calculated value of 57 Hz is reminiscent of J_{CC} values observed in CH₃C(==O)X compounds when X is an electronegative substituent,⁷ *i.e.*, J_{CC} values between 54 and 59 Hz. From this comparison, one can conclude that the value obtained for J_{BC} in 1-CH₃B₅H₈ is not unlike the values for J_{CC} found for sp³-hybridized carbons bound to sp²-hybridized carbons.

Recently, Blizzard and Santry have confirmed that the Fermi contact contribution to J_{CC} is the dominant mechanism.8 Pople and Santry9 and, more recently, Jameson and Gutowsky¹⁰ have shown that the orbitaldipole contribution to the coupling constant (the second largest contributing mechanism⁷) would increase as one goes from lithium to fluorine in the periodic table. It would be expected that the orbital-dipole mechanism contributes even less to $J_{\rm BC}$ values than to $J_{\rm CC}$ values and, therefore, an approximate hybridization for the apex boron in $1-CH_3B_5H_8$ is sp². This hybridization

⁽¹⁾ J. D. Odom, P. D. Ellis, and H. C. Walsh, J. Amer. Chem. Soc., 93, 3529 (1971).

⁽²⁾ P. D. Ellis, J. D. Odom, and D. W. Lowman, manuscripts in preparation.

⁽³⁾ F. J. Weigert and J. D. Roberts, J. Amer. Chem. Soc., 91, 4940 (1969), were the first to report a value of $J_{\rm BC}$. They determined $J_{\rm BC}$ in the tetraphenylborate anion. However, there was not a discussion of this coupling constant in their communication. We wish to thank the referee who pointed out this reference to us.

⁽⁴⁾ N. Muller and D. E. Pritchard, J. Chem. Phys., 31, 768, 1471 (1959).

⁽⁵⁾ H. S. Gutowsky and C. Juan, *ibid.*, 37, 2198 (1962).
(6) H. M. McConnell, *ibid.*, 24, 460 (1956).
(7) G. A. Gray, P. D. Ellis, D. D. Traficante, and G. E. Maciel, J. Magn. Resonance, 1, 41 (1969).

⁽⁸⁾ A. C. Blizzard and D. P. Santry, J. Chem. Phys., 55, 950 (1971).
(9) J. A. Pople and D. P. Santry, Mol. Phys., 8, 1 (1963).
(10) C. J. Jameson and H. S. Gutowsky, J. Amer. Chem. Soc., 91, 6232 (1969).

agrees well with that predicted by Lipscomb's equations of balance for the 4120 styx structure of B₅H₉.¹¹ This value can be contrasted to a recent localized molecular orbital calculation in which sp^{1.3} is obtained for the hybridization of the apex boron in B_5H_{9} .¹²

At present we are examining the ¹¹B and ¹³C nmr of other organoboranes and carboranes to better characterize this important nmr parameter.

Acknowledgment. The XL-100-15 nmr spectrometer was purchased with funds from a National Science Foundation Department Development Grant. J. D. O, is grateful to the donors of the Petroleum Research Fund, administered by the American Chemical Society, and P. D. E. to the University of South Carolina Committee on Research and Productive Scholarship for support of this research.

(11) W. N. Lipscomb, "Boron Hydrides," W. A. Benjamin, New York, N. Y., 1963, Chapter 2.

(12) E. Switkes, W. N. Lipscomb, and M. D. Newton, J. Amer. Chem. Soc., 92, 3847 (1970).

(13) National Science Foundation Undergraduate Research Participant, 1971.

> Paul D. Ellis,* Jerome D. Odom,* Douglas W. Lowman Alan D. Cardin¹³

Department of Chemistry, University of South Carolina Columbia, South Carolina 29208 Received September 8, 1971

Univalent Palladium Complexes

Sir:

In industrial olefin catalysis by palladium(II) complexes it is known¹⁻³ that reduction of Pd(II) species takes place through decomposition of organopalladium-(II) intermediates and that reoxidation of Pd(0) species can be effected with the aid of one-electron oxidant, cupric salt. Implication of Pd(I) species has been suggested^{4,5} for these processes. However, no report has been made on univalent palladium complexes except the peculiar arene-sandwiched dimeric compound [Pd- $Al_2Cl_7(C_6H_6)l_2^{6,7}$ and the elusive complex of unknown molecular weight $[Pd(C_6H_6)(H_2O)ClO_4]_{n}$.⁴ We wish to report here preparations and properties of novel diamagnetic, dimeric palladium(I) complexes.

These complexes are accessible through two routes from "Pd(RNC)2."^{8,9} One successful preparation uses PdX₂(RNC)₂ obtained by treating either palladium(II) halides (PdI₂ or PdBr₂) or the Kharash complex PdCl₂-(PhCN)₂ with an excess of *tert*-BuNC in benzene. The palladium(II) complexes $PdX_2(tert-BuNC)_2$ (1, X = Cl; 2, X = Br; 3, X = I) are monomeric, thermally and air stable compounds¹⁰ with spectroscopic features listed in Table I.

E. W. Stern, *Catal. Rev.*, 1, 73 (1968).
 C. W. Bird, "Transition Metal Intermediates in Organic Synthesis," Academic Press Inc., New York, N. Y., 1967, p 88.

(3) A. Aguilo, Advan. Organometal. Chem., 5, 321 (1967).
(4) J. M. Davidson and C. Triggs, J. Chem. Soc. A, 1324 (1968).
(5) J. M. Davidson and C. Triggs, *ibid.*, A, 1331 (1968).
(6) G. Allegra, A. Immirzi, and L. Porri, J. Amer. Chem. Soc., 87,

1394 (1965).

(7) G. Allegra, G. Tettamanti Casagrande, A. Immirzi, L. Porri, and G. Vitulli, *ibid.*, 92, 289 (1970).
(8) E. O. Fischer and H. Werner, *Chem. Ber.*, 95, 703 (1962).

(9) S. Otsuka, A. Nakamura, and Y. Tatsuno, J. Amer. Chem. Soc., 91, 6994 (1969).

(10) The elemental analysis as well as the vapor pressure osmometric molecular weight measurement in benzene conformed to the calculated values.

Table I. tert-Butyl Isocyanide-Palladium(II) and -Palladium(I) Complexes

Compound	¹ H nmr, ppm	∕—Ir,ª o N≡C	rm⁻¹ Pd—X	$\lambda_{\max,b}$ nm (ϵ)
cis-PdCl ₂ (tert-BuNC) ₂ ^c	8.43 (s) ^d	2251	338	
		2236	318	
trans-PdBr2(tert- BuNC)2 ^e	8.47 (s) ^d	2224	269	
trans-PdI ₂ (tert-BuNC) ₂	$8.46 (s)^{d}$	2216	231	
$[PdCl(tert-BuNC)_2]_2- (C_6H_5Cl)$	8.43 (s) ^f 2.65 ^g	2166	259	307 (8000)
[PdBr(tert-BuNC) ₂] ₂ [PdI(tert-BuNC) ₂] ₂	8.46 (s) ^f 8.45 (s) ^f	2170 2178	185 164	317 (6700) 345 (8500)

^a Nujol mull. ^b Measured in CH₂Cl₂: the extinction coefficients suggest that these absorption arise from charge transfer. ° The cis configuration is deduced on the basis of the two ir NC and Pd-X stretching bands. d tert-Butyl proton resonances measured in chloroform at room temperature using TMS as a reference. "The ir data dictate the trans configuration. I Measured in acetone- d_6 using TMS as a reference. q Aromatic protons complex multiplets.

To a freshly prepared, cold (-30°) chlorobenzene solution of "Pd(tert-BuNC)2" was added under nitrogen an equimolar amount of analytically pure 1. The mixture was stirred for 4 hr maintaining the temperature around -30° . After 4 hr, the temperature was allowed to reach 0° within ~ 1 hr. Upon chilling at -20° , the palladium(I) complex $[PdCl(tert-BuNC)_2]_2(C_6H_5Cl)$ (4) precipitates as yellow needles¹¹ (70%). This is fairly air and thermally stable; the decomposition (under nitrogen) starts slowly around 150° and was rapid above 200°. An equimolar mixture of $Pd(tert-BuNC)_2$ and 2, dissolved in cold (-30°) ether, was stirred for 5 hr, allowing the temperature to rise in a similar fashion as above. The solvent being removed in vacuo, the residue was recrystallized from a n-hexane-tetrahydrofuran mixture to give [PdBr(tert-BuNC)₂]₂ (5) as orange prisms¹⁰ (88%), dec 138-152°. Similarly, [PdI(tert- $BuNC_{2}$ (6) was obtained as orange needles¹⁰ (90%), dec 125°, slightly soluble in benzene.

The oxidative addition of organic halides, e.g., $PhCH_2I$ or XCH_2COOCH_3 (X = Cl, Br), to Pd(tert-BuNC)₂ led to 6 via the σ -alkyl isocyanide complex 7 (cf. Scheme I). Attempted preparations of phosphinepalladium(I) complexes from $Pd(PPh_3)_4$ and $PdI_2(PPh_3)_2$ have been unsuccessful. The capability of alkyl isocyanide ligands for stabilization of the odd valence state is noteworthy.

The three complexes 4-6 have bridging halogen atoms, as inferred from their ir spectra, which lack absorptions in the 1600-1800-cm⁻¹ region, suggesting the absence of a bridging isocyanide group (>C=NR), but show low-frequency Pd-X stretching bands (Table I) assigned to bridging halogen-metal stretching vibrations.¹² The structure predicts two NC stretching

(11) It gave a good elemental analysis. The molecular weight in benzene was found as 603, 620 (calcd 729), indicating its slight dissociation of chlorobenzene. A question raised by a referee concerns the dissociation asking if some special mode of bonding to the aromatic ring is involved. The oxidative addition (cleavage of the C-Cl bond) ring is involved. can be excluded from the absence of terminal Cl-Pd stretching vibration. Solvated aromatics are found in some rhodium(I) complexes [R. Ugo, F. Bonati, and S. Cenini, *Inorg. Chim. Acta*, 3, 220 (1969)]. When the chloropalladium(I) complex was prepared by the alternative route using alkyl halide in benzene (see Scheme I), it was obtained as a benzene adduct, [PdCl(lert-BuNC)2]2(C6H6), dec 155°, which also gave a good elemental analysis.

(12) M. S. Lupin, J. Powell, and B. L. Shaw, J. Chem. Soc., 1410 (1966).